extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1C23 = S3×Dic6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 48 | 4- | (C3xC6).1C2^3 | 144,137 |
(C3×C6).2C23 = D12⋊5S3 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 48 | 4- | (C3xC6).2C2^3 | 144,138 |
(C3×C6).3C23 = D12⋊S3 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).3C2^3 | 144,139 |
(C3×C6).4C23 = Dic3.D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).4C2^3 | 144,140 |
(C3×C6).5C23 = D6.D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).5C2^3 | 144,141 |
(C3×C6).6C23 = D6.6D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4+ | (C3xC6).6C2^3 | 144,142 |
(C3×C6).7C23 = C4×S32 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).7C2^3 | 144,143 |
(C3×C6).8C23 = S3×D12 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4+ | (C3xC6).8C2^3 | 144,144 |
(C3×C6).9C23 = D6⋊D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).9C2^3 | 144,145 |
(C3×C6).10C23 = C2×S3×Dic3 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).10C2^3 | 144,146 |
(C3×C6).11C23 = D6.3D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).11C2^3 | 144,147 |
(C3×C6).12C23 = D6.4D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4- | (C3xC6).12C2^3 | 144,148 |
(C3×C6).13C23 = C2×C6.D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | | (C3xC6).13C2^3 | 144,149 |
(C3×C6).14C23 = C2×D6⋊S3 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).14C2^3 | 144,150 |
(C3×C6).15C23 = C2×C3⋊D12 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | | (C3xC6).15C2^3 | 144,151 |
(C3×C6).16C23 = C2×C32⋊2Q8 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).16C2^3 | 144,152 |
(C3×C6).17C23 = S3×C3⋊D4 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).17C2^3 | 144,153 |
(C3×C6).18C23 = Dic3⋊D6 | φ: C23/C2 → C22 ⊆ Aut C3×C6 | 12 | 4+ | (C3xC6).18C2^3 | 144,154 |
(C3×C6).19C23 = C6×Dic6 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).19C2^3 | 144,158 |
(C3×C6).20C23 = S3×C2×C12 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).20C2^3 | 144,159 |
(C3×C6).21C23 = C6×D12 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).21C2^3 | 144,160 |
(C3×C6).22C23 = C3×C4○D12 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 24 | 2 | (C3xC6).22C2^3 | 144,161 |
(C3×C6).23C23 = C3×S3×D4 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).23C2^3 | 144,162 |
(C3×C6).24C23 = C3×D4⋊2S3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 24 | 4 | (C3xC6).24C2^3 | 144,163 |
(C3×C6).25C23 = C3×S3×Q8 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).25C2^3 | 144,164 |
(C3×C6).26C23 = C3×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 48 | 4 | (C3xC6).26C2^3 | 144,165 |
(C3×C6).27C23 = Dic3×C2×C6 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).27C2^3 | 144,166 |
(C3×C6).28C23 = C6×C3⋊D4 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 24 | | (C3xC6).28C2^3 | 144,167 |
(C3×C6).29C23 = C2×C32⋊4Q8 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).29C2^3 | 144,168 |
(C3×C6).30C23 = C2×C4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).30C2^3 | 144,169 |
(C3×C6).31C23 = C2×C12⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).31C2^3 | 144,170 |
(C3×C6).32C23 = C12.59D6 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).32C2^3 | 144,171 |
(C3×C6).33C23 = D4×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).33C2^3 | 144,172 |
(C3×C6).34C23 = C12.D6 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).34C2^3 | 144,173 |
(C3×C6).35C23 = Q8×C3⋊S3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).35C2^3 | 144,174 |
(C3×C6).36C23 = C12.26D6 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).36C2^3 | 144,175 |
(C3×C6).37C23 = C22×C3⋊Dic3 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).37C2^3 | 144,176 |
(C3×C6).38C23 = C2×C32⋊7D4 | φ: C23/C22 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).38C2^3 | 144,177 |
(C3×C6).39C23 = D4×C3×C6 | central extension (φ=1) | 72 | | (C3xC6).39C2^3 | 144,179 |
(C3×C6).40C23 = Q8×C3×C6 | central extension (φ=1) | 144 | | (C3xC6).40C2^3 | 144,180 |
(C3×C6).41C23 = C32×C4○D4 | central extension (φ=1) | 72 | | (C3xC6).41C2^3 | 144,181 |