extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3xC6).1C23 = S3xDic6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 48 | 4- | (C3xC6).1C2^3 | 144,137 |
(C3xC6).2C23 = D12:5S3 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 48 | 4- | (C3xC6).2C2^3 | 144,138 |
(C3xC6).3C23 = D12:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).3C2^3 | 144,139 |
(C3xC6).4C23 = Dic3.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).4C2^3 | 144,140 |
(C3xC6).5C23 = D6.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).5C2^3 | 144,141 |
(C3xC6).6C23 = D6.6D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4+ | (C3xC6).6C2^3 | 144,142 |
(C3xC6).7C23 = C4xS32 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).7C2^3 | 144,143 |
(C3xC6).8C23 = S3xD12 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4+ | (C3xC6).8C2^3 | 144,144 |
(C3xC6).9C23 = D6:D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).9C2^3 | 144,145 |
(C3xC6).10C23 = C2xS3xDic3 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).10C2^3 | 144,146 |
(C3xC6).11C23 = D6.3D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).11C2^3 | 144,147 |
(C3xC6).12C23 = D6.4D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4- | (C3xC6).12C2^3 | 144,148 |
(C3xC6).13C23 = C2xC6.D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | | (C3xC6).13C2^3 | 144,149 |
(C3xC6).14C23 = C2xD6:S3 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).14C2^3 | 144,150 |
(C3xC6).15C23 = C2xC3:D12 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | | (C3xC6).15C2^3 | 144,151 |
(C3xC6).16C23 = C2xC32:2Q8 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 48 | | (C3xC6).16C2^3 | 144,152 |
(C3xC6).17C23 = S3xC3:D4 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).17C2^3 | 144,153 |
(C3xC6).18C23 = Dic3:D6 | φ: C23/C2 → C22 ⊆ Aut C3xC6 | 12 | 4+ | (C3xC6).18C2^3 | 144,154 |
(C3xC6).19C23 = C6xDic6 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).19C2^3 | 144,158 |
(C3xC6).20C23 = S3xC2xC12 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).20C2^3 | 144,159 |
(C3xC6).21C23 = C6xD12 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).21C2^3 | 144,160 |
(C3xC6).22C23 = C3xC4oD12 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 24 | 2 | (C3xC6).22C2^3 | 144,161 |
(C3xC6).23C23 = C3xS3xD4 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).23C2^3 | 144,162 |
(C3xC6).24C23 = C3xD4:2S3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 24 | 4 | (C3xC6).24C2^3 | 144,163 |
(C3xC6).25C23 = C3xS3xQ8 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).25C2^3 | 144,164 |
(C3xC6).26C23 = C3xQ8:3S3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 48 | 4 | (C3xC6).26C2^3 | 144,165 |
(C3xC6).27C23 = Dic3xC2xC6 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 48 | | (C3xC6).27C2^3 | 144,166 |
(C3xC6).28C23 = C6xC3:D4 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 24 | | (C3xC6).28C2^3 | 144,167 |
(C3xC6).29C23 = C2xC32:4Q8 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).29C2^3 | 144,168 |
(C3xC6).30C23 = C2xC4xC3:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).30C2^3 | 144,169 |
(C3xC6).31C23 = C2xC12:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).31C2^3 | 144,170 |
(C3xC6).32C23 = C12.59D6 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).32C2^3 | 144,171 |
(C3xC6).33C23 = D4xC3:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 36 | | (C3xC6).33C2^3 | 144,172 |
(C3xC6).34C23 = C12.D6 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).34C2^3 | 144,173 |
(C3xC6).35C23 = Q8xC3:S3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).35C2^3 | 144,174 |
(C3xC6).36C23 = C12.26D6 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).36C2^3 | 144,175 |
(C3xC6).37C23 = C22xC3:Dic3 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 144 | | (C3xC6).37C2^3 | 144,176 |
(C3xC6).38C23 = C2xC32:7D4 | φ: C23/C22 → C2 ⊆ Aut C3xC6 | 72 | | (C3xC6).38C2^3 | 144,177 |
(C3xC6).39C23 = D4xC3xC6 | central extension (φ=1) | 72 | | (C3xC6).39C2^3 | 144,179 |
(C3xC6).40C23 = Q8xC3xC6 | central extension (φ=1) | 144 | | (C3xC6).40C2^3 | 144,180 |
(C3xC6).41C23 = C32xC4oD4 | central extension (φ=1) | 72 | | (C3xC6).41C2^3 | 144,181 |